• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Huang, Jingqi (Huang, Jingqi.) | Zhao, Mi (Zhao, Mi.) (Scholars:赵密) | Du, Xiuli (Du, Xiuli.) (Scholars:杜修力)

Indexed by:

EI Scopus SCIE

Abstract:

The faults play an important role in inducing tremendous potential threat to the stability capability of embedded tunnels in strong earthquake events. Based on the finite element method with the viscous spring artificial boundary, the earthquake motions of oblique incidence can be transformed into the equivalent nodal forces acting on the truncated boundary of finite element model. In the present work, the formulas of equivalent nodal forces for the 2-D plane P waves with arbitrary incident angles are deduced and implemented into the commercial software ABAQUS. The accuracy of the formulas and the implementation are demonstrated by the numerical examples of a 2-D semi-infinite space and an circular lined tunnel in half-space subjected to obliquely incident P waves. The proposed numerical method is employed to investigate the non-linear responses of the tunnels within surface normal fault ground under obliquely incident P waves. The numerical results indicate that the tunnels buried in the hanging wall, in the foot wall and across the fault, suffer different failure patterns. The tunnels across the fault suffer the most serious plastic damage, followed by that within the hanging wall. Moreover, the seismic responses of the tunnels across the fault and within the hanging wall increase with the inclination degree of the incident P waves, as well as opposite relationship for tunnels within the foot wall. (C) 2016 Elsevier Ltd. All rights reserved.

Keyword:

Non-linear response Normal fault Incident angle P waves Tunnels

Author Community:

  • [ 1 ] [Huang, Jingqi]Beijing Univ Technol, Minist Educ, Key Lab Urban Secur & Disaster Engn, Beijing 100124, Peoples R China
  • [ 2 ] [Zhao, Mi]Beijing Univ Technol, Minist Educ, Key Lab Urban Secur & Disaster Engn, Beijing 100124, Peoples R China
  • [ 3 ] [Du, Xiuli]Beijing Univ Technol, Minist Educ, Key Lab Urban Secur & Disaster Engn, Beijing 100124, Peoples R China
  • [ 4 ] [Huang, Jingqi]Tsinghua Univ, Dept Civil Engn, Beijing 100084, Peoples R China

Reprint Author's Address:

  • 赵密

    [Zhao, Mi]Beijing Univ Technol, Minist Educ, Key Lab Urban Secur & Disaster Engn, Beijing 100124, Peoples R China;;Beijing Univ Technol, Minist Educ, Key Lab Urban Secur & Disaster Engn, Beijing 100124, Peoples R China

Show more details

Related Keywords:

Source :

TUNNELLING AND UNDERGROUND SPACE TECHNOLOGY

ISSN: 0886-7798

Year: 2017

Volume: 61

Page: 26-39

6 . 9 0 0

JCR@2022

ESI Discipline: ENGINEERING;

ESI HC Threshold:165

CAS Journal Grade:2

Cited Count:

WoS CC Cited Count: 130

SCOPUS Cited Count: 154

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 12

Online/Total:554/10595588
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.