Indexed by:
Abstract:
We develope an M-estimator for partially linear models in which the nonparametric component is subject to various shape constraints. Bernstein polynomials are used to approximate the unknown nonparametric function, and shape constraints are imposed on the coefficients. Asymptotic normality of regression parameters and the optimal rate of convergence of the shape-restricted nonparametric function estimator are established under very mild conditions. Some simulation studies and a real data analysis are conducted to evaluate the finite sample performance of the proposed method.
Keyword:
Reprint Author's Address:
Email:
Source :
COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION
ISSN: 0361-0918
Year: 2017
Issue: 1
Volume: 46
Page: 779-794
0 . 9 0 0
JCR@2022
ESI Discipline: MATHEMATICS;
ESI HC Threshold:66
CAS Journal Grade:4
Cited Count:
WoS CC Cited Count: 1
SCOPUS Cited Count: 1
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 6
Affiliated Colleges: