Indexed by:
Abstract:
针对PM_(2. 5)质量浓度序列不确定性和随机性特征,提出一种基于互补集合经验模态分解和优化Elman神经网络的区间预测模型.首先,利用互补集合经验模态分解将原始PM_(2. 5)质量浓度序列进行分解,并用样本熵将其重组为复杂度差异明显的子序列.其次,针对各子序列分别用多输入单输出Elman神经网络(Elman neural network,ENN)建立PM_(2. 5)质量浓度预测模型.在各子序列预测结果基础之上,采用多输入双输出Elman神经网络实现PM_(2. 5)质量浓度区间预测.最后,为了进一步提高预测模型性能,提出一种区间预测评价指标作为目标函数,采用思维进化算法对Elman神经...
Keyword:
Reprint Author's Address:
Email:
Source :
北京工业大学学报
Year: 2020
Issue: 04
Volume: 46
Page: 377-384
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 11
Affiliated Colleges: