Indexed by:
Abstract:
针对滚动轴承信号易受噪声干扰和智能诊断模型鲁棒性差的问题,在一维卷积网络的基础上,提出基于多输入层卷积神经网络的滚动轴承故障诊断模型。相比传统卷积神经网络诊断模型,该模型具有多个输入层,初始输入层为原始信号,以最大化地发挥卷积网络自动学习原始信号特征的优势;同时可将谱分析数据在模型任意位置输入模型,以提升模型的识别精度和抗干扰能力。通过滚动轴承模拟试验,进行可行性和有效性验证,同时与人工神经网络(Artificial Neural Network,ANN)、支持向量机(Support Vector Machine,SVM)和典型的卷积神经模型进行对比,证明了所提出模型的优势;向测试集中加入噪声...
Keyword:
Reprint Author's Address:
Email:
Source :
振动与冲击
Year: 2020
Issue: 12
Volume: 39
Page: 142-149,163
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 18
Affiliated Colleges: