• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Liu, Xingwei (Liu, Xingwei.) | Song, Xiaoyan (Song, Xiaoyan.) (Scholars:宋晓艳) | Wang, Haibin (Wang, Haibin.) | Hou, Chao (Hou, Chao.) | Liu, Xuemei (Liu, Xuemei.) | Wang, Xilong (Wang, Xilong.)

Indexed by:

EI Scopus SCIE PubMed

Abstract:

In contrast to the conventional method that obtains a high fracture strength of tungsten carbide-cobalt (WC-Co) cemented carbides by reducing WC grain size to near-nano or nanoscale, a new approach has been developed to achieve ultrahigh fracture strength by strengthening the WC grains through precipitate reinforcement. The cemented carbides were prepared by liquid-state sintering the in situ synthesized WC-Co composite powders with a little excess carbon and pre-milled Cr3C2 particles having different size scales. It was found that the nanoscale dispersed particles precipitate in the WC grains, which mainly have a coherent or semi-coherent interface with the matrix. The pinning effect of the nanoparticles on the motion of dislocations within the WC grains was observed. The mechanisms for the precipitation of nanoparticles in the WC grains were discussed, based on which a new method to enhance the resistance against the transgranular fracture of cemented carbides was proposed.

Keyword:

fracture strength cemented carbide dislocation precipitate interface

Author Community:

  • [ 1 ] [Liu, Xingwei]Beijing Univ Technol, Educ Minist China, Coll Mat Sci & Engn, Key Lab Adv Funct Mat, Beijing 100124, Peoples R China
  • [ 2 ] [Song, Xiaoyan]Beijing Univ Technol, Educ Minist China, Coll Mat Sci & Engn, Key Lab Adv Funct Mat, Beijing 100124, Peoples R China
  • [ 3 ] [Wang, Haibin]Beijing Univ Technol, Educ Minist China, Coll Mat Sci & Engn, Key Lab Adv Funct Mat, Beijing 100124, Peoples R China
  • [ 4 ] [Hou, Chao]Beijing Univ Technol, Educ Minist China, Coll Mat Sci & Engn, Key Lab Adv Funct Mat, Beijing 100124, Peoples R China
  • [ 5 ] [Liu, Xuemei]Beijing Univ Technol, Educ Minist China, Coll Mat Sci & Engn, Key Lab Adv Funct Mat, Beijing 100124, Peoples R China
  • [ 6 ] [Wang, Xilong]Beijing Univ Technol, Educ Minist China, Coll Mat Sci & Engn, Key Lab Adv Funct Mat, Beijing 100124, Peoples R China

Reprint Author's Address:

  • 宋晓艳

    [Song, Xiaoyan]Beijing Univ Technol, Educ Minist China, Coll Mat Sci & Engn, Key Lab Adv Funct Mat, Beijing 100124, Peoples R China

Show more details

Related Keywords:

Source :

NANOTECHNOLOGY

ISSN: 0957-4484

Year: 2016

Issue: 41

Volume: 27

3 . 5 0 0

JCR@2022

ESI Discipline: MATERIALS SCIENCE;

ESI HC Threshold:305

CAS Journal Grade:2

Cited Count:

WoS CC Cited Count: 22

SCOPUS Cited Count: 27

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 6

Online/Total:1058/10531230
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.