Indexed by:
Abstract:
在复杂化工建模过程中,由于过程数据的时序性、高非线性以及高维数的特点,导致传统的静态神经网络建模无法满足一定的精度。为了解决该问题,提出一种基于自编码神经网络特征提取的回声状态网络模型(features extracted from auto-encoder based echo state network, FEAE-ESN)。传统回声状态网络(echo state network, ESN)方法中,储备池的节点数目很多,输出的维数很高,数据间存在共线性。为解决上述问题,待回声状态网络训练好之后,使用自编码神经网络对其储备池输出进行特征提取。通过自编码网络特征提取,一方面可以有效地降低储备池...
Keyword:
Reprint Author's Address:
Email:
Source :
化工学报
Year: 2019
Issue: 12
Volume: 70
Page: 4770-4776
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 21
Affiliated Colleges: