Indexed by:
Abstract:
目前,针对深度学习的人体行为识别研究,往往采用视频中的全局信息对人体行为进行分析.然而,局部信息缺失造成的特征提取不完备,同样会导致识别精度急剧下降.由此,提出了基于多流深度学习的人体行为识别方法,将人体局部信息与全局信息相结合,通过局部不同特征的精确识别,使人体行为识别更加准确.实验表明,与现有深度学习方法相比,提出的方法在数据集UCF101和HMDB51上识别精度分别平均提高了约4.0%和6.2%.
Keyword:
Reprint Author's Address:
Email:
Source :
数学的实践与认识
Year: 2019
Issue: 24
Volume: 49
Page: 133-139
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 8
Affiliated Colleges: