Indexed by:
Abstract:
为突破传统预测方法在小样本数据下电商产品销量预测中精度较低的局限,开展基于集成学习Xgboost的预测模型研究.综合考虑影响电商产品销量的多维指标,包括:在线搜索、在线评论、页面访问、库存与订购量、情绪指数等并利用熵值法融合同类指标.应用Logistic函数和正则修正项,结合贪心算法划分子树,构建基于集成学习Xgboost的电商产品销量预测模型.针对京东商城的联想zuk z2手机产品进行模型检验,并与BP神经网络、SVM支持向量机、BP-SVM组合预测三个模型进行对比,发现融合多维指标的Xgboost预测模型的精度显著提高,为小样本数据下电商产品销量预测提供方法和思路.
Keyword:
Reprint Author's Address:
Email:
Source :
计算机工程与应用
ISSN: 1002-8331
Year: 2019
Issue: 15
Volume: 55
Page: 177-184
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count: -1
Chinese Cited Count:
30 Days PV: 25
Affiliated Colleges: