Indexed by:
Abstract:
提出一种基于隐马尔可夫模型(HMM)的恶意域名检测方法.分析善恶域名在DNS通信中的各类特征,利用Spark大数据处理平台的高效计算能力对属性特征进行统计,在此基础上,通过HMM中的Baum-Welch算法和Viterbi算法对恶意域名进行准确分类.实验结果表明,与随机森林模型相比,HMM对恶意域名分类的准确率与召回率均较高.
Keyword:
Reprint Author's Address:
Email:
Source :
计算机工程
ISSN: 1000-3428
Year: 2019
Issue: 9
Volume: 45
Page: 161-168
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count: 2
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count: 1
Chinese Cited Count:
30 Days PV: 6
Affiliated Colleges: