Indexed by:
Abstract:
We investigate the application of quantum cellular automata in image encryption and propose a novel quantum gray-scale image encryption algorithm based on one-dimensional quantum cellular automata. The quantum image encryption algorithm can be realized by subtly constructing the evolution rules of one-dimensional quantum cellular automata. Because all quantum operations are invertible, the quantum image decryption algorithm is the inverse of the encryption algorithm. The proposed quantum image encryption algorithm has an algorithm complexity of Theta(n), lower than the algorithm complexity, Theta(n(2)) of existing quantum image encryption schemes based on quantum Fourier transform. Supported by detailed numerical simulation and theoretical analysis, our proposal has outperformed its classical counterpart and other image encryption schemes in terms of the security, computational complexity, and robustness. And it also provides a clue of introducing quantum cellular automata into image encryption. (C) 2016 Elsevier Inc. All rights reserved.
Keyword:
Reprint Author's Address:
Email:
Source :
INFORMATION SCIENCES
ISSN: 0020-0255
Year: 2016
Volume: 345
Page: 257-270
8 . 1 0 0
JCR@2022
ESI Discipline: COMPUTER SCIENCE;
ESI HC Threshold:167
CAS Journal Grade:1
Cited Count:
WoS CC Cited Count: 125
SCOPUS Cited Count: 145
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: