Indexed by:
Abstract:
大数据时代,人类收集、存储、传输、管理数据的能力日益提高,各行各业已经积累了大量的数据资源,这些数据常呈现出多源性和异构性.如何对这些多源数据进行有效的聚类(也称为多视图聚类)已成为当今机器学习研究关注的焦点之一.现有的多视图聚类算法主要从"全局"角度关注不同视图和特征对簇结构的贡献,没有考虑不同样本间存在的"局部"信息间的差异.因此,提出一种新的多视图样本加权聚类算法(sample-weighted multi-view clustering, SWMVC),该算法对每个样本的不同视图进行加权,采用交替方向乘子法自适应学习样本权值,不仅可以学习不同样本点间不同视图权重的"局部"差异,还可以从...
Keyword:
Reprint Author's Address:
Email:
Source :
计算机研究与发展
Year: 2019
Issue: 08
Volume: 56
Page: 1677-1685
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: