Indexed by:
Abstract:
移动机器人自主建图是完成智能行为的前提。为提高机器人智能水平和直观的用户交互,地图需要扩展超出几何和外观信息的语义信息。研究了将基于深度残差网络(DRN)的像素级图像语义分割和三维同时定位与建图(SLAM)相融合的三维语义地图构建方法。首先,采用一种联合中值滤波算法进行深度图像的修复,使用改进的迭代最近点(ICP)算法得到相机估计位姿以及基于随机蕨类的闭环检测构建出三维环境地图;其次,采用优化的深度残差网络对输入的图像实现较精准的像素语义级别的预测与分割;最后,采用贝叶斯更新方法,渐进式的将图像分割获取的语义分类标签迁移到重建的室内三维模型中,获得完整的三维语义地图。实验表明,所设计的方法可以...
Keyword:
Reprint Author's Address:
Email:
Source :
仪器仪表学报
Year: 2019
Issue: 05
Volume: 40
Page: 240-248
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 6
Affiliated Colleges: