Indexed by:
Abstract:
Case retrieval, case reuse and case retention are critical to the reasoning performance of the traditional case-based reasoning (CBR) model. In this paper, the integrated use of template reduction technology (TR), genetic algorithms (GA), nearest neighbor (NN) rules and group decision-making (GDM) establishes the CBR-GDM model. First, the TR method of the case base is introduced. Then, an attribute weights optimization using GA is discussed in the case retrieval phase. After that, a case reuse method is carried out with NN and GDM. Finally, 10 data sets from UCI are used to carry out a comparison experiment by 5-fold cross-validation. The classification accuracy rate and the classification efficiency are analyzed under the small samples, before and after the data reduction. The results show that, combined with TR, GA and GDM, the pattern classification performance by CBR can be improved.
Keyword:
Reprint Author's Address:
Source :
INTERNATIONAL JOURNAL ON ARTIFICIAL INTELLIGENCE TOOLS
ISSN: 0218-2130
Year: 2016
Issue: 2
Volume: 25
1 . 1 0 0
JCR@2022
ESI Discipline: COMPUTER SCIENCE;
ESI HC Threshold:167
CAS Journal Grade:4
Cited Count:
WoS CC Cited Count: 2
SCOPUS Cited Count: 2
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: