Indexed by:
Abstract:
协同过滤算法是推荐系统中研究较为广泛和深入的算法,为解决传统协同过滤算法无法处理时间动态变化的问题,提出一种新的改进算法:SpecialTSVD++算法.在传统SVD++算法中分别融入用户评分的时间信息、用户和物品的时间偏置,并且加入用户特征信息,增强数据与时间的关联度,体现数据的动态变化,并且结合用户属性产生个性化推荐结果.Movielens-10m数据集上的实验结果表明,SpecialTSVD++算法通过对时间动态变化带来的推荐影响进行优化处理,使推荐结果更加贴近用户当前需求,能显著提升推荐系统准确率.
Keyword:
Reprint Author's Address:
Email:
Source :
软件导刊
ISSN: 1672-7800
Year: 2018
Issue: 11
Volume: 17
Page: 56-59,64
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count: -1
Chinese Cited Count:
30 Days PV: 26
Affiliated Colleges: