Indexed by:
Abstract:
Feature extraction and representation is a key step in scene classification. In this paper, a contour detection-based mid-level features learning method is proposed for scene classification. First, a sketch tokens-based contour detection scheme is proposed to initialize seed blocks for learning mid-level patches and the patches with more contour pixels are selected as seed blocks. The procedure is demonstrated to be helpful for scene classification. Next, the seed blocks are employed to train an exemplar SVM to discover other similar occurrences and an entropy-rank criterion is utilized to mine the discriminative patches. Finally, scene categories are identified by matching the discriminative patches and testing images. Extensive experiments on the MIT Indoor-67 dataset, the 15-scene dataset and the UIUC-sports dataset show that the proposed approach yields better performance than other state-of-the-art counterparts.
Keyword:
Reprint Author's Address:
Email:
Source :
INTERNATIONAL JOURNAL OF ADVANCED ROBOTIC SYSTEMS
ISSN: 1729-8814
Year: 2016
Volume: 13
2 . 3 0 0
JCR@2022
ESI Discipline: ENGINEERING;
ESI HC Threshold:166
CAS Journal Grade:4
Cited Count:
WoS CC Cited Count: 1
SCOPUS Cited Count: 2
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 4
Affiliated Colleges: