Indexed by:
Abstract:
M-estimation is a widely used technique for robust statistical inference. In this paper, we study robust partially functional linear regression model in which a scale response variable is explained by a function-valued variable and a finite number of real-valued variables. For the estimation of the regression parameters, which include the infinite dimensional function as well as the slope parameters for the real-valued variables, we use polynomial splines to approximate the slop parameter. The estimation procedure is easy to implement, and it is resistant to heavy-tailederrors or outliers in the response. The asymptotic properties of the proposed estimators are established. Finally, we assess the finite sample performance of the proposed method by Monte Carlo simulation studies.
Keyword:
Reprint Author's Address:
Email:
Source :
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS
ISSN: 0361-0926
Year: 2016
Issue: 21
Volume: 45
Page: 6436-6446
0 . 8 0 0
JCR@2022
ESI Discipline: MATHEMATICS;
ESI HC Threshold:71
CAS Journal Grade:4
Cited Count:
WoS CC Cited Count: 3
SCOPUS Cited Count: 3
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 10
Affiliated Colleges: