Indexed by:
Abstract:
大量有效样本标注是有监督学习性能的重要保证,但又存在耗时且人力成本高的问题.加之,在实际应用环境,很难在每个应用领域都有足够的标定样本数据支持分类器的训练.而将源领域所获的训练模型直接用于目标领域,又由于目标领域和源领域信息分布差异,会导致跨领域分类器应用准确率降低的问题.针对以上问题,提出一种基于多视角共享特征的领域空间对齐的跨领域情感分类(domain alignment based on multi-viewpoint domain-shared feature for cross-domain sentiment classification,DAMF)算法.该算法首先通过融合多个情感...
Keyword:
Reprint Author's Address:
Email:
Source :
计算机研究与发展
Year: 2018
Issue: 11
Volume: 55
Page: 2439-2451
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 7