Indexed by:
Abstract:
针对室内空气质量评级存在多影响因子及随机变化的特点,在T-S模糊神经网络(TSFNN)基础上提出一种基于改进粒子群(PSO)优化的算法来对室内空气品质状况进行评价。根据GB/T18883-2002,选取室内代表性污染因子构建标准评价表;通过标准评价表对网络进行训练和测试,生成可用评价模型。结果表明,该模型能够对室内空气质量进行客观可靠的评价,为智能家居室内空气质量调控提供可靠保证,具有较高的实用价值。
Keyword:
Reprint Author's Address:
Email:
Source :
电子技术应用
Year: 2017
Issue: 01
Volume: 43
Page: 84-87,91
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 7
Affiliated Colleges: