Indexed by:
Abstract:
针对应用集合经验模态分解(ensemble empirical mode decomposition,EEMD)方法难以提取强噪声背景下滚动轴承微弱故障特征的问题,提出了将最小熵反褶积(minimum entropy deconvolution,MED)和小波阈值去噪与EEMD相结合的改进方法.先采用MED对滚动轴承振动信号降噪,增强冲击特征;然后利用基于EEMD的小波阈值去噪方法处理降噪后信号得到一组固有模态分量(intrinsic mode function,IMF),并依据相关系数准则剔除虚假分量;对重构后信号进行Teager能量算子解调分析,提取其微弱故障特征.通过仿真信号和实验台信号...
Keyword:
Reprint Author's Address:
Email:
Source :
北京工业大学学报
Year: 2017
Issue: 06
Volume: 43
Page: 859-864
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 17
Affiliated Colleges: