Indexed by:
Abstract:
针对多元序列预测建模过程中特征选择问题,提出了一种基于数据驱动型高维k-近邻互信息的特征选择方法。该方法首先将数据驱动型k-近邻法扩展用于高维特征变量之间互信息的估计,然后采用前向累加策略给出全部特征最优排序,根据预设无关特征个数剔除无关特征,再利用后向交叉策略找出并剔除冗余特征,最终得到最优强相关特征子集。以Friedman数据、Housing数据和实际污水处理出水总磷预测数据为例,采用多层感知器神经网络预测模型进行仿真实验,验证了所提方法的有效性。
Keyword:
Reprint Author's Address:
Email:
Source :
智能系统学报
Year: 2017
Issue: 05
Volume: 12
Page: 595-600
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 7
Affiliated Colleges: