Indexed by:
Abstract:
微积分学中一个重要的命题指出:设函数f在闭区间[a,b]上黎曼可积,F在[a,b]上连续且除有限多个点外F′(x)=f(x),则牛顿—莱布尼兹公式成立.文献[1]提出如下问题:若F′(x)=f(x)不成立的点是无限集E,上述结论如何?本文证明当E的聚点集有限时,牛顿—莱布尼兹公式成立;当E的聚点集无限时,反例说明结果是否定的.
Keyword:
Reprint Author's Address:
Email:
Source :
高等数学研究
Year: 2016
Issue: 06
Volume: 19
Page: 41-43
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 24
Affiliated Colleges: