Indexed by:
Abstract:
针对矿井中瓦斯浓度变化的时变性、非线性等特点,提出了一种动态神经网络瓦斯浓度实时预测模型。该模型利用历史数据建立初步预测模型,通过实时采集的瓦斯浓度数据进行预测,并用新数据及时调整预测模型的学习参数和结构参数,使得预测模型能够根据瓦斯浓度的动力学特性及时更新。用矿井实测瓦斯浓度数据进行试验,结果表明该模型较其他静态预测模型的预测精度有明显的提高。
Keyword:
Reprint Author's Address:
Email:
Source :
控制工程
Year: 2016
Issue: 04
Volume: 23
Page: 478-483
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 27
Affiliated Colleges: