Indexed by:
Abstract:
为降低无线传感器网络中核学习机训练时的数据通信代价和节点计算代价,研究了基于筛选机制的L1正则化核学习机分布式训练方法。提出了一种节点局部训练样本筛选机制,各节点利用筛选出的训练样本,在节点模型对本地训练样本的预测值与邻居节点间局部最优模型对本地训练样本预测值相一致的约束下,利用增广拉格朗日乘子法求解L1正则化核学习机分布式优化问题,利用交替方向乘子法求解节点本地的L1正则化核学习机的稀疏模型;仅依靠相邻节点间传输稀疏模型的协作方式,进一步优化节点局部模型,直至各节点模型收敛。基于此方法,提出了基于筛选机制的L1正则化核最小平方误差学习机的分布式训练算法。仿真实验验证了该算法在模型预测正确率、...
Keyword:
Reprint Author's Address:
Email:
Source :
山东大学学报(理学版)
Year: 2016
Issue: 09
Volume: 51
Page: 137-144
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 5
Affiliated Colleges: