• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Zhou, Zhiwei (Zhou, Zhiwei.) (Scholars:周志伟) | Yang, Yanling (Yang, Yanling.) (Scholars:杨艳玲) | Li, Xing (Li, Xing.) (Scholars:李星) | Liu, Yongwang (Liu, Yongwang.) | Su, Zhaoyang (Su, Zhaoyang.)

Indexed by:

EI Scopus SCIE

Abstract:

It is necessary to put all aspects,,namely raw water characteristics, corresponding FBWW, and coagulation mechanisms, i.e., charge neutralization and sweep flocculation together to make clear the dissolved organic matter (DOM) removal characteristics and the fate of fractionations in recycle design. The DOM characteristics of molecular weight (MW) distribution, hydrophobicity, and fluorescence in source water W1 (synthesized water) and W2 ("Longtan" lake water), FBWW and treated water samples therefore are identified, and three recycling ratios of 2%, 5%, and 8% as compared to control (0%) are conducted. It is found that DOM within FBWW becomes more hydrophilic and lower MW as compared to corresponding source water. Recycling trials indicate that higher DOM concentrations and more low-MW fractions are not of any benefit to enhance UV254 and DOC removal. Hydrophobic acid can be further eliminated in case recycling particles mainly produced by sweep flocculation, while weakly hydrophobic acid and hydrophilic fraction can be enhanced and removed under recycling particles mainly formed by charge neutralization. Higher molecular weight fraction (>30 kDa) exhibits potentially enhanced removal at preferred recycling ratio of 5%. Fluorescent characteristics analysis demonstrate that recycling FBWW can effectively improve humic-like substances removal, but the protein-like matters are resistant to be eliminated with unvaried structure.

Keyword:

EEM drinking water treatment dissolved organic matter coagulation mechanism recycling filter backwash water

Author Community:

  • [ 1 ] [Zhou, Zhiwei]Beijing Univ Technol, Key Lab Beijing Water Qual Sci & Water Environm R, Beijing 100124, Peoples R China
  • [ 2 ] [Yang, Yanling]Beijing Univ Technol, Key Lab Beijing Water Qual Sci & Water Environm R, Beijing 100124, Peoples R China
  • [ 3 ] [Li, Xing]Beijing Univ Technol, Key Lab Beijing Water Qual Sci & Water Environm R, Beijing 100124, Peoples R China
  • [ 4 ] [Liu, Yongwang]Beijing Univ Technol, Key Lab Beijing Water Qual Sci & Water Environm R, Beijing 100124, Peoples R China
  • [ 5 ] [Su, Zhaoyang]Beijing Univ Technol, Key Lab Beijing Water Qual Sci & Water Environm R, Beijing 100124, Peoples R China

Reprint Author's Address:

  • 杨艳玲

    [Yang, Yanling]Beijing Univ Technol, Key Lab Beijing Water Qual Sci & Water Environm R, Beijing 100124, Peoples R China

Show more details

Related Keywords:

Source :

SEPARATION SCIENCE AND TECHNOLOGY

ISSN: 0149-6395

Year: 2014

Issue: 18

Volume: 49

Page: 2981-2989

2 . 8 0 0

JCR@2022

ESI Discipline: CHEMISTRY;

ESI HC Threshold:258

JCR Journal Grade:3

CAS Journal Grade:4

Cited Count:

WoS CC Cited Count: 2

SCOPUS Cited Count: 4

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 1

Online/Total:642/10536983
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.