Indexed by:
Abstract:
A new method based on the use of the Jones polynomial, a well-known topological invariant of knot theory, is introduced to tackle and quantify topological aspects of structural complexity of vortex tangles in ideal fluids. By re-writing the Jones polynomial in terms of helicity, the resulting polynomial becomes then function of knot topology and vortex circulation, providing thus a new invariant of topological fluid dynamics. Explicit computations of the Jones polynomial for some standard configurations, including the Whitehead link and the Borromean rings (whose linking numbers are zero), are presented for illustration. In the case of a homogeneous, isotropic tangle of vortex filaments with same circulation, the new Jones polynomial reduces to some simple algebraic expression, that can be easily computed by numerical methods. This shows that this technique may offer a new setting and a powerful tool to detect and compute topological complexity and to investigate relations with energy, by tackling fundamental aspects of turbulence research.
Keyword:
Reprint Author's Address:
Email:
Source :
FLUID DYNAMICS RESEARCH
ISSN: 0169-5983
Year: 2014
Issue: 6
Volume: 46
1 . 5 0 0
JCR@2022
ESI Discipline: ENGINEERING;
ESI HC Threshold:176
JCR Journal Grade:3
CAS Journal Grade:4
Cited Count:
WoS CC Cited Count: 7
SCOPUS Cited Count: 8
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 3
Affiliated Colleges: