Indexed by:
Abstract:
In this study, the nonlinear vibrations of an axially moving beam are investigated by considering the coupling of the longitudinal and transversal motion. The Galerkin method is used to truncate the governing partial differential equations into a set of coupled nonlinear ordinary differential equations. By detuning the axially velocity, the exact parameters with which the system may turn to internal resonance are detected. The method of multiple scales is applied to the governing equations to study the nonlinear dynamics of the steady-state response caused by the internal-external resonance. The saturation and jump phenomena of such system have been reported by investigating the nonlinear amplitude-response curves with respect to external excitation, internal, and external detuning parameters. The longitudinal external excitation may trigger only longitudinal response when excitation amplitude is weak. However, beyond the critical excitation amplitude, the response energy will be transferred from the longitudinal motion to the transversal motion even the excitation is employed on the longitudinal direction. Such energy transfer due to saturation has the potential to be used in the vibration suppression.
Keyword:
Reprint Author's Address:
Email:
Source :
NONLINEAR DYNAMICS
ISSN: 0924-090X
Year: 2014
Issue: 4
Volume: 78
Page: 2547-2556
5 . 6 0 0
JCR@2022
ESI Discipline: ENGINEERING;
ESI HC Threshold:176
JCR Journal Grade:1
CAS Journal Grade:1
Cited Count:
WoS CC Cited Count: 89
SCOPUS Cited Count: 107
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 9
Affiliated Colleges: