Indexed by:
Abstract:
求根问题是计算数论中的一个困难性问题,为了提高求根问题的求解效率和扩大量子计算的应用范围,对求根问题进行了量子算法的分析.在两大量子算法Shor算法和Grover算法的基础上,提出了2种解决求根问题的量子算法RF-Shor算法和RF-Grover算法.经分析,RF-Shor算法需要多项式规模的量子门资源,能以接近1的概率求出求根问题的所有解.在没有使用任何可提高搜索效率的经典策略的情况下,RF-Grover算法能在O(M/k)步内以至少1/2的概率求出求根问题k个解中的一个解.
Keyword:
Reprint Author's Address:
Email:
Source :
北京工业大学学报
Year: 2015
Issue: 03
Volume: 41
Page: 366-371
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 7
Affiliated Colleges: