Indexed by:
Abstract:
针对P300电位信号微弱、抗干扰能力差、识别率低等问题,提出一种小波包变换(wavelet packet transform,WPT)与共空域子空间分解法(spatial subspace decomposition,CSSD)相结合的特征提取方法,即WPCSSD法.首先,对脑电信号进行叠加平均以提高信号的信噪比;其次,使用小波包法对脑电信号进行滤波,并依据P300电位的有效时频信息重构脑电信号;然后,求取其AR模型功率谱,并基于CSSD法构造空间滤波器,获得能体现P300电位时-频-空特征的特征向量;最后,以支持向量机为分类器进行分类.实验结果表明:本方法具有较强的抗干扰能力和自适应能力,在国际BCI竞赛数据集上获得了95.22%的分类正确率,证明了本方法的正确性和有效性.
Keyword:
Reprint Author's Address:
Email:
Source :
北京工业大学学报
ISSN: 0254-0037
Year: 2014
Issue: 4
Volume: 40
Page: 521-527
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count: 2
Chinese Cited Count:
30 Days PV: 9
Affiliated Colleges: