Indexed by:
Abstract:
针对现有的人脸识别算法由于光照、表情、姿态、伪装等变化而严重影响识别性能的问题,提出了一种基于通用学习框架结合2DPCA的鲁棒人脸识别算法.首先借助于额外的通用训练样本集进行样本的叠加以增加训练样本的数量;然后利用经典的2DPCA算法进行特征提取;最后,利用最近邻分类器对人脸进行分类并完成最终的人脸识别.在基准人脸数据库ORL、FERET及鲁棒人脸数据库AR、扩展YaleB上的实验验证了该算法的有效性及鲁棒性,实验结果表明,相比其他几种人脸识别算法,提出的算法不仅提高了人脸识别率,而且大大地减少了识别所用时间,有望应用于实时鲁棒人脸自动识别系统中.
Keyword:
Reprint Author's Address:
Email:
Source :
电视技术
ISSN: 1002-8692
Year: 2014
Issue: 11
Volume: 38
Page: 177-182
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count: 2
Chinese Cited Count:
30 Days PV: 5
Affiliated Colleges: