Indexed by:
Abstract:
脑机接口(BCI)是在人或动物脑与外部设备间建立的直接连接通路,信号分析功能模块是其核心部分,其中特征提取算法的效果如何是脑电图(EEG)信号分析算法的关键.EEG信号本身信噪比低,传统的EEG特征提取方法存在着缺少空间信息,需要的特征量个数较多,分类正确率低等不足.针对以上问题,本文提出了一种基于小波和独立分量分析(ICA)的时间-频率-空间EEG特征的提取方法,分别用离散小波变换(DWT)和ICA提取时频域特征和空域特征.并用支持向量机(SVM)和遗传算法(GA)相结合的方法对提取的特征进行分类.实验对比结果表明,所提出的方法有效地克服了传统的时频特征提取方法空间信息描述不足等问题,对于2003年BCI竞赛数据datasetⅢ分析,最高分类正确率为90.71%.
Keyword:
Reprint Author's Address:
Email:
Source :
生物医学工程学杂志
ISSN: 1001-5515
Year: 2014
Issue: 5
Volume: 31
Page: 955-961
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count: 24
Chinese Cited Count:
30 Days PV: 26
Affiliated Colleges: