Indexed by:
Abstract:
为快速求解在线支撑向量回归算法,给出了一种基于Lagrangian支撑向量回归(LSVR)的在线增量学习算法.LSVR得到的无约束最优化问题可以采用快速迭代算法求解,该迭代算法可以从任何初始点收敛.LSVR求解时,在迭代开始只需要对阶数为输入样本数加一的矩阵求逆.在线增量LSVR学习算法在线性情况下采用S-M-W公式可以明显减少运算时间,在非线性情况下矩阵求逆充分利用了历史学习结果,减少了很多重复计算.通过在多个数据集上进行对比,实验结果表明:该算法与以前算法相比不仅保持了较好的精度,同时训练时间大大减少.
Keyword:
Reprint Author's Address:
Email:
Source :
北京工业大学学报
ISSN: 0254-0037
Year: 2013
Issue: 7
Volume: 39
Page: 1065-1071
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count: -1
Chinese Cited Count:
30 Days PV: 22
Affiliated Colleges: