• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Zhou, W. P. (Zhou, W. P..) | Liu, F. R. (Liu, F. R..) (Scholars:刘富荣) | Bai, N. (Bai, N..) | Wan, Y. H. (Wan, Y. H..) (Scholars:万玉红) | Lin, X. (Lin, X..) | Chen, J. M. (Chen, J. M..) (Scholars:陈继民)

Indexed by:

EI Scopus SCIE

Abstract:

The laser wavelength plays an important role in achieving high density in optical storage. Previous studies on the phase transition were mainly focused on the range from infrared to visible waveband. In this work, crystallization of amorphous Ge2Sb2Te5 thin film induced by an ultraviolet laser with the wavelength of 248 nm was investigated. The crystallization behavior of Ge2Sb2Te5 thin films was analyzed using X-ray diffraction, atomic force microscopy, Raman scattering and scanning electron microscope. Based on the X-ray diffraction pattern results, the phase transition from the amorphous Ge2Sb2Te5 to the face-centered cubic crystallized Ge2Sb2Te5 was obtained with the laser fluence in the range of 24.4-66.6 mJ/cm(2). Atomic force microscopy images showed that the inhomogeneous crystalline structure with the grain size ranging from tens of nanometer to 250 nm was produced in spite of the lower laser fluence of 24.4 mJ/cm(2). This structure can be attributed to the ultrafast violet laser radiance. A new peak at 140 cm(-1) caused by the segregation of Te crystalline was possibly due to the higher photon energy absorbed by the ultraviolet laser radiance. This work is of significance for the optical storage in developing new applications by ultraviolet laser. (C) 2013 Elsevier B.V. All rights reserved.

Keyword:

Crystallization Phase change material Ge2Sb2Te5 Ultraviolet laser

Author Community:

  • [ 1 ] [Zhou, W. P.]Beijing Univ Technol, Inst Laser Engn, Beijing 100124, Peoples R China
  • [ 2 ] [Liu, F. R.]Beijing Univ Technol, Inst Laser Engn, Beijing 100124, Peoples R China
  • [ 3 ] [Bai, N.]Beijing Univ Technol, Inst Laser Engn, Beijing 100124, Peoples R China
  • [ 4 ] [Chen, J. M.]Beijing Univ Technol, Inst Laser Engn, Beijing 100124, Peoples R China
  • [ 5 ] [Wan, Y. H.]Beijing Univ Technol, Coll Appl Sci, Beijing 100124, Peoples R China
  • [ 6 ] [Lin, X.]Northwestern Polytech Univ, State Key Lab Solidificat Proc, Xian 710072, Peoples R China

Reprint Author's Address:

  • 刘富荣

    [Liu, F. R.]Beijing Univ Technol, Inst Laser Engn, Beijing 100124, Peoples R China

Show more details

Related Keywords:

Source :

APPLIED SURFACE SCIENCE

ISSN: 0169-4332

Year: 2013

Volume: 285

Page: 97-101

6 . 7 0 0

JCR@2022

ESI Discipline: MATERIALS SCIENCE;

JCR Journal Grade:1

CAS Journal Grade:2

Cited Count:

WoS CC Cited Count: 18

SCOPUS Cited Count: 21

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 0

Online/Total:298/10714643
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.