Indexed by:
Abstract:
One- and two-dimensional plasmonic nanostructures can be fabricated using nanoscale tensile stress. A polymer layer, coated with a thin metal film, is exposed to an interference pattern produced by ultraviolet laser beams. Crosslinking is induced between the polymeric molecules located within the bright fringes. This process not only increases the refractive index but also reduces the polymer layer thickness. Corrugations occur on the continuous thin metal film due to the nanoscale stress in the polymer layer. Thus, a periodic nanostructure of area 3 x 3 mm and depth 50 nm is created both in the polymer and metal films with excellent homogeneity and reproducibility. This method enables direct writing of a large-area plasmonic nanostructure at low cost which can be used in the design of optoelectronic devices and sensors. (C)2013 Optical Society of America
Keyword:
Reprint Author's Address:
Source :
OPTICS EXPRESS
ISSN: 1094-4087
Year: 2013
Issue: 21
Volume: 21
Page: 24490-24496
3 . 8 0 0
JCR@2022
ESI Discipline: PHYSICS;
JCR Journal Grade:1
CAS Journal Grade:2
Cited Count:
WoS CC Cited Count: 5
SCOPUS Cited Count: 5
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 10
Affiliated Colleges: