Indexed by:
Abstract:
In this article, we study model selection and model averaging in quantile regression. Under general conditions, we develop a focused information criterion and a frequentist model average estimator for the parameters in quantile regression model, and examine their theoretical properties. The new procedures provide a robust alternative to the least squares method or likelihood method, and a major advantage of the proposed procedures is that when the variance of random error is infinite, the proposed procedure works beautifully while the least squares method breaks down. A simulation study and a real data example are presented to show that the proposed method performs well with a finite sample and is easy to use in practice.
Keyword:
Reprint Author's Address:
Email:
Source :
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS
ISSN: 0361-0926
Year: 2013
Issue: 20
Volume: 42
Page: 3716-3734
0 . 8 0 0
JCR@2022
ESI Discipline: MATHEMATICS;
JCR Journal Grade:4
CAS Journal Grade:4
Cited Count:
WoS CC Cited Count: 4
SCOPUS Cited Count: 5
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 9
Affiliated Colleges: