Indexed by:
Abstract:
文本对象所固有的多义性,面对短文本特征稀疏和上下文缺失的情况,现有处理方法无法明辨语义,形成了底层特征和高层表达之间巨大的语义鸿沟.本文尝试借由时间、空间、联系等要素挖掘文本间隐含的关联关系,重构文本上下文范畴,提升情感极性分类性能.具体做法对应一个两阶段处理过程:1)基于短文本的内在联系将其初步重组成上下文(领域);2)将待处理短文本归入适合的上下文(领域)进行深入处理.首先给出了基于NaiveBayes分类器的短文本情感极性分类基本框架,揭示出上下文(领域)范畴差异对分类性能的影响.接下来讨论了基于领域归属划分的文本情感极性分类增强方法,并将领域的概念扩展为上下文关系,提出了基于特殊上下文...
Keyword:
Reprint Author's Address:
Email:
Source :
自动化学报
Year: 2012
Issue: 01
Volume: 38
Page: 55-67
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 16
Affiliated Colleges: