Indexed by:
Abstract:
Three-dimensional (3D) macroporous perovskite-type oxides SrFeO3-delta (i.e., SFO-xEG, x = 1, 3, and 6) with a cubic perovskite structure have been prepared using the citric acid-assisted poly(methyl methacrylate)-templating method in the presence of a certain amount (1, 3 or 6 mL) of ethylene glycol (EG). The physicochemical properties of the materials were characterized by means of numerous techniques and their catalytic activities were evaluated for toluene combustion. It is shown that the SFO-3EG sample possessed the best pore quality and highest surface area (ca. 34 m(2)/g). Most of the pores of SFO-xEG (x = 1, 3, and 6) were ca. 72, 52, and 64 nm, respectively. There was a good relationship of surface area, oxygen adspecies concentration, and low-temperature reducibility with catalytic performance of the sample (i.e., SFO-3EG > SFO-6EG > SFO-1EG > SFO-bulk). The SFO-3EG catalyst performed the best, giving a T-50% of ca. 270 degrees C and a T-90% of ca. 310 degrees C at space velocity = 5000 mL/(g h). It is concluded that the good catalytic performance of SFO-3EG was associated with its large surface area, high oxygen adspecies concentration, and good low-temperature reducibility as well as the high-quality 3D macroporous structure. (C) 2012 Elsevier B. V. All rights reserved.
Keyword:
Reprint Author's Address:
Email:
Source :
CATALYSIS TODAY
ISSN: 0920-5861
Year: 2013
Volume: 201
Page: 40-48
5 . 3 0 0
JCR@2022
ESI Discipline: CHEMISTRY;
JCR Journal Grade:1
CAS Journal Grade:2
Cited Count:
WoS CC Cited Count: 28
SCOPUS Cited Count: 29
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 13
Affiliated Colleges: