• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Ji, Kemeng (Ji, Kemeng.) | Dai, Hongxing (Dai, Hongxing.) (Scholars:戴洪兴) | Dai, Jianxing (Dai, Jianxing.) | Deng, Jiguang (Deng, Jiguang.) | Wang, Fang (Wang, Fang.) | Zhang, Han (Zhang, Han.) | Zhang, Lei (Zhang, Lei.)

Indexed by:

EI Scopus SCIE

Abstract:

Three-dimensional (3D) macroporous perovskite-type oxides SrFeO3-delta (i.e., SFO-xEG, x = 1, 3, and 6) with a cubic perovskite structure have been prepared using the citric acid-assisted poly(methyl methacrylate)-templating method in the presence of a certain amount (1, 3 or 6 mL) of ethylene glycol (EG). The physicochemical properties of the materials were characterized by means of numerous techniques and their catalytic activities were evaluated for toluene combustion. It is shown that the SFO-3EG sample possessed the best pore quality and highest surface area (ca. 34 m(2)/g). Most of the pores of SFO-xEG (x = 1, 3, and 6) were ca. 72, 52, and 64 nm, respectively. There was a good relationship of surface area, oxygen adspecies concentration, and low-temperature reducibility with catalytic performance of the sample (i.e., SFO-3EG > SFO-6EG > SFO-1EG > SFO-bulk). The SFO-3EG catalyst performed the best, giving a T-50% of ca. 270 degrees C and a T-90% of ca. 310 degrees C at space velocity = 5000 mL/(g h). It is concluded that the good catalytic performance of SFO-3EG was associated with its large surface area, high oxygen adspecies concentration, and good low-temperature reducibility as well as the high-quality 3D macroporous structure. (C) 2012 Elsevier B. V. All rights reserved.

Keyword:

Oxygen nonstoichiometry perovskite-type oxide Strontium ferrite Toluene combustion Three-dimensional macroporous Poly(methyl methacrylate)-templating method

Author Community:

  • [ 1 ] [Ji, Kemeng]Beijing Univ Technol, Coll Environm & Energy Engn, Lab Catalysis Chem & Nanosci, Dept Chem & Chem Engn, Beijing 100124, Peoples R China
  • [ 2 ] [Dai, Hongxing]Beijing Univ Technol, Coll Environm & Energy Engn, Lab Catalysis Chem & Nanosci, Dept Chem & Chem Engn, Beijing 100124, Peoples R China
  • [ 3 ] [Deng, Jiguang]Beijing Univ Technol, Coll Environm & Energy Engn, Lab Catalysis Chem & Nanosci, Dept Chem & Chem Engn, Beijing 100124, Peoples R China
  • [ 4 ] [Wang, Fang]Beijing Univ Technol, Coll Environm & Energy Engn, Lab Catalysis Chem & Nanosci, Dept Chem & Chem Engn, Beijing 100124, Peoples R China
  • [ 5 ] [Zhang, Han]Beijing Univ Technol, Coll Environm & Energy Engn, Lab Catalysis Chem & Nanosci, Dept Chem & Chem Engn, Beijing 100124, Peoples R China
  • [ 6 ] [Zhang, Lei]Beijing Univ Technol, Coll Environm & Energy Engn, Lab Catalysis Chem & Nanosci, Dept Chem & Chem Engn, Beijing 100124, Peoples R China
  • [ 7 ] [Dai, Jianxing]Nanchang Mil Acad, Off 7143, Nanchang 330103, Jiangxi Provinc, Peoples R China

Reprint Author's Address:

  • 戴洪兴

    [Dai, Hongxing]Beijing Univ Technol, Coll Environm & Energy Engn, Lab Catalysis Chem & Nanosci, Dept Chem & Chem Engn, Beijing 100124, Peoples R China

Show more details

Related Keywords:

Source :

CATALYSIS TODAY

ISSN: 0920-5861

Year: 2013

Volume: 201

Page: 40-48

5 . 3 0 0

JCR@2022

ESI Discipline: CHEMISTRY;

JCR Journal Grade:1

CAS Journal Grade:2

Cited Count:

WoS CC Cited Count: 28

SCOPUS Cited Count: 29

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 13

Online/Total:847/10801314
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.