• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Zhao, Zhenxuan (Zhao, Zhenxuan.) | Dai, Hongxing (Dai, Hongxing.) (Scholars:戴洪兴) | Du, Yucheng (Du, Yucheng.) | Deng, Jiguang (Deng, Jiguang.) | Zhang, Lei (Zhang, Lei.) | Shi, Fengjuan (Shi, Fengjuan.)

Indexed by:

EI Scopus SCIE

Abstract:

MgO nano/microparticles with multiple morphologies and porous structures have been fabricated via the surfactant (poly(N-vinyl-2-pyrrolidone, poly(ethylene glycol) (PEG), cetyltrimethylammonium bromide, oleylamine or triblock copolymer P123 or F127) assisted solvo- or hydrothermal route in a dodecylamine or oleic acid solvent. The as-fabricated MgO samples were characterized by means of numerous techniques. It is shown that the obtained MgO samples were single-phase and of cubic in crystal structure; the particle morphology and pore architecture mainly depended upon the surfactant, solvent, and solvo- or hydrothermal temperature adopted. The solvothermal process resulted in polycrystalline MgO, whereas the hydrothermal one gave rise to single-crystalline MgO. Surface areas (8-169 m(2) g(-1)) of the MgO samples derived solvothermally were lower than those (181-204 m(2) g(-1)) of the MgO counterparts derived hydrothermally, with the mesoporous MgO generated after the PEG-assisted hydrothermal treatment at 240 degrees C for 72 h possessing the highest surface area. CO2 adsorption capacities of the MgO samples were in good agreement with their surface areas, and the mesoporous MgO derived hydrothermally with PEG at 240 degrees C for 72 h exhibited the largest CO2 uptake (368 mu mol g(-1)) below 350 degrees C. We believe that such a high low-temperature adsorption capacity renders the mesoporous magnesia material useful in the utilization of acidic gas adsorption. (C) 2011 Elsevier B.V. All rights reserved.

Keyword:

Surfactant-assisted hydrothermal strategy Porous magnesium oxide Surfactant-assisted solvothermal synthesis Carbon dioxide adsorption

Author Community:

  • [ 1 ] [Zhao, Zhenxuan]Beijing Univ Technol, Coll Environm & Energy Engn, Dept Chem & Chem Engn, Lab Catalysis Chem & Nanosci, Beijing 100124, Peoples R China
  • [ 2 ] [Dai, Hongxing]Beijing Univ Technol, Coll Environm & Energy Engn, Dept Chem & Chem Engn, Lab Catalysis Chem & Nanosci, Beijing 100124, Peoples R China
  • [ 3 ] [Deng, Jiguang]Beijing Univ Technol, Coll Environm & Energy Engn, Dept Chem & Chem Engn, Lab Catalysis Chem & Nanosci, Beijing 100124, Peoples R China
  • [ 4 ] [Zhang, Lei]Beijing Univ Technol, Coll Environm & Energy Engn, Dept Chem & Chem Engn, Lab Catalysis Chem & Nanosci, Beijing 100124, Peoples R China
  • [ 5 ] [Shi, Fengjuan]Beijing Univ Technol, Coll Environm & Energy Engn, Dept Chem & Chem Engn, Lab Catalysis Chem & Nanosci, Beijing 100124, Peoples R China
  • [ 6 ] [Du, Yucheng]Beijing Univ Technol, Coll Mat Sci & Engn, Minist Educ, Key Lab Adv Funct Mat, Beijing 100124, Peoples R China

Reprint Author's Address:

  • 戴洪兴

    [Dai, Hongxing]Beijing Univ Technol, Coll Environm & Energy Engn, Dept Chem & Chem Engn, Lab Catalysis Chem & Nanosci, Beijing 100124, Peoples R China

Show more details

Related Keywords:

Source :

MATERIALS CHEMISTRY AND PHYSICS

ISSN: 0254-0584

Year: 2011

Issue: 3

Volume: 128

Page: 348-356

4 . 6 0 0

JCR@2022

ESI Discipline: MATERIALS SCIENCE;

JCR Journal Grade:1

CAS Journal Grade:2

Cited Count:

WoS CC Cited Count: 79

SCOPUS Cited Count: 83

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 15

Online/Total:1499/10842548
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.