Indexed by:
Abstract:
Bismuth vanadates with multiple morphologies and/or porous structures were prepared using the alcoho-hydrothermal strategy with bismuth nitrate and ammonium metavanadate as metal source, NaOH as pH adjustor, ethanol and ethylene glycol as solvent, and/or dodecylamine (DA), oleylamine (OL) or oleic acid (OA) as surfactant. The materials were characterized by means of the XRD, Raman, TGA/DSC, FT-IR, BET, SEM, TEM, XPS, and UV-vis techniques. The photocatalytic performance of the as-obtained samples was evaluated for the degradation of phenol in the presence of a small amount of H2O2 under visible-light irradiation, and the effect of phenol concentration on the photocatalytic activity was also examined. It is found that the surfactant and pH value had a significant influence on the particle morphology and even the crystalline structure of the product. Porous olive-like monoclinic BiVO4 samples could be prepared with DA, OL or OA as surfactant at pH = 1.5 or 3.0 and alcoho-hydrothermal temperature = 100 degrees C. With DA as surfactant at an alcoho-hydrothermal temperature of 100 degrees C, short-rod-like monoclinic BiVO4 and porous sheet-layered spherical orthorhombic Bi4V2O11 were obtained when the pH value of the precursor solution was raised to 7.0 and 11.0, respectively. Among the BiVO4 samples, the porous olive-like one with a surface area of 12.7 m(2)/g exhibited the best visible-light-driven photocatalytic performance for phenol degradation. It is concluded that the excellent photocatalytic activity of the porous olive-like BiVO4 sample was associated with its higher surface area and surface oxygen vacancy density, porous structure, lower bandgap energy, and unique morphology. (C) 2011 Elsevier B.V. All rights reserved.
Keyword:
Reprint Author's Address:
Email:
Source :
APPLIED CATALYSIS B-ENVIRONMENTAL
ISSN: 0926-3373
Year: 2011
Issue: 3-4
Volume: 105
Page: 326-334
2 2 . 1 0 0
JCR@2022
ESI Discipline: CHEMISTRY;
JCR Journal Grade:1
CAS Journal Grade:1
Cited Count:
WoS CC Cited Count: 158
SCOPUS Cited Count: 169
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 5
Affiliated Colleges: