Indexed by:
Abstract:
In this paper the limit of vanishing Debye length in a bipolar drift-diffusion model for semiconductors with physical contact-insulating boundary conditions is studied in one-dimensional case. The quasi-neutral limit (zero-Debye-length limit) is proved by using the asymptotic expansion methods of singular perturbation theory and the classical energy methods. Our results imply that one kind of the new and interesting phenomena in semiconductor physics occurs. (C) 2010 Elsevier Inc. All rights reserved.
Keyword:
Reprint Author's Address:
Source :
JOURNAL OF DIFFERENTIAL EQUATIONS
ISSN: 0022-0396
Year: 2010
Issue: 12
Volume: 249
Page: 3291-3311
2 . 4 0 0
JCR@2022
ESI Discipline: MATHEMATICS;
JCR Journal Grade:1
CAS Journal Grade:2
Cited Count:
WoS CC Cited Count: 3
SCOPUS Cited Count: 1
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 11
Affiliated Colleges: