• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Na, Wei (Na, Wei.) | Wei, Qi (Wei, Qi.) | Lan, Jia-Ning (Lan, Jia-Ning.) | Nie, Zuo-Ren (Nie, Zuo-Ren.) (Scholars:聂祚仁) | Sun, He (Sun, He.) | Li, Qun-Yan (Li, Qun-Yan.)

Indexed by:

EI Scopus SCIE

Abstract:

Bifunctional periodic mesoporous organosilicas (PMOs) with ethane bridging groups within the framework and various amounts of terminally bonded groups in the pore channels was synthesized by the co-condensation of 1,2-bis(triethoxysilyl)ethane (BTESE) and 3-glycidoxypropyltrimethoxylsilane (GPTMS) in the presence of triblock copolymer poly(ethylene glycol)-b-poly(propylene glycol)-b-poly(ethylene glycol) (P123) surfactants under acidic conditions and utilized as supports for enzyme immobilization It is revealed that glycidoxypropyl groups have been successfully covalently attached to the pore wall of PMOs and a fraction of them have experienced epoxy ring opening reaction to form diol groups. The functional materials still preserve a mesoscopic ordering at a concentration of GPTMS as high as 10% in the reaction mixtures The BET surface area, pore volume and pore size of the functionalized materials decrease with increasing amount of GPTMS, but a desirable pore structure remains when the GPTMS amount Increases to 10% The coexistence of the epoxy groups and the diol groups provides an efficient two-step covalent enzyme immobilization mechanism. The bifunctional PMOs materials exhibit higher papain immobilization efficiency and stability than pure PMOs because of the covalent interaction between the amino groups of papain and the epoxy groups of functionalized PMOs (C) 2010 Elsevier Inc All rights reserved.

Keyword:

Stability Enzyme immobilization Functionalization Periodic mesoporous organosilicas Two-step immobilization mechanism

Author Community:

  • [ 1 ] [Na, Wei]Beijing Univ Technol, Coll Mat Sci & Engn, Beijing 100124, Peoples R China
  • [ 2 ] [Wei, Qi]Beijing Univ Technol, Coll Mat Sci & Engn, Beijing 100124, Peoples R China
  • [ 3 ] [Lan, Jia-Ning]Beijing Univ Technol, Coll Mat Sci & Engn, Beijing 100124, Peoples R China
  • [ 4 ] [Nie, Zuo-Ren]Beijing Univ Technol, Coll Mat Sci & Engn, Beijing 100124, Peoples R China
  • [ 5 ] [Sun, He]Beijing Univ Technol, Coll Mat Sci & Engn, Beijing 100124, Peoples R China
  • [ 6 ] [Li, Qun-Yan]Beijing Univ Technol, Coll Mat Sci & Engn, Beijing 100124, Peoples R China

Reprint Author's Address:

  • 聂祚仁

    [Nie, Zuo-Ren]Beijing Univ Technol, Coll Mat Sci & Engn, 100 Pingleyuan, Beijing 100124, Peoples R China

Email:

Show more details

Related Keywords:

Source :

MICROPOROUS AND MESOPOROUS MATERIALS

ISSN: 1387-1811

Year: 2010

Issue: 1-3

Volume: 134

Page: 72-78

5 . 2 0 0

JCR@2022

ESI Discipline: MATERIALS SCIENCE;

JCR Journal Grade:1

CAS Journal Grade:2

Cited Count:

WoS CC Cited Count: 43

SCOPUS Cited Count: 48

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 5

Online/Total:504/10591679
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.