Indexed by:
Abstract:
In this article, the problem of estimating the covariance matrix in general linear mixed models is considered. Two new classes of estimators obtained by shrinking the eigenvalues towards the origin and the arithmetic mean, respectively, are proposed. It is shown that these new estimators dominate the unbiased estimator under the squared error loss function. Finally, some simulation results to compare the performance of the proposed estimators with that of the unbiased estimator are reported. The simulation results indicate that these new shrinkage estimators provide a substantial improvement in risk under most situations.
Keyword:
Reprint Author's Address:
Email:
Source :
ACTA MATHEMATICA SCIENTIA
ISSN: 0252-9602
Year: 2010
Issue: 4
Volume: 30
Page: 1115-1124
1 . 0 0 0
JCR@2022
ESI Discipline: MATHEMATICS;
JCR Journal Grade:4
CAS Journal Grade:4
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: