• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Guo, Gencai (Guo, Gencai.) | Wang, Changhao (Wang, Changhao.) | Luo, Siwei (Luo, Siwei.) | Ming, Bangming (Ming, Bangming.) | Wang, Bingrong (Wang, Bingrong.) | Wang, Ruzhi (Wang, Ruzhi.) (Scholars:王如志)

Indexed by:

EI Scopus SCIE

Abstract:

The potential of C3N nanoribbons used as anode material for lithium-ion batteries has been systematically investigated through first-principles calculations. The results suggest that C3N nanoribbons have excellent mechanical properties (stiffness ranging from 286.28 to 412.69 Nm(-1)) and good electronic conductivity (with a bandgap of 0-0.31 eV). Further studies reveal that the H-passivated C3N nanoribbons have high Li insertion capacity (708.60 mAhg(-1)) and significantly enhanced Li binding strength (0.21-2.11 eV) without the sacrifice of Li mobility. The high stiffness, superior cycle performance, good electronic conductivity, and excellent Li migration capability indicate the great potential of C3N nanoribbons to be an anode material. The calculated results provide the valuable insights for the development of high-performance C3N nanoribbons electrode materials in lithium-ion batteries. (C) 2020 Elsevier B.V. All rights reserved.

Keyword:

Nanoribbons First-principles calculations C3N Li-ion batteries

Author Community:

  • [ 1 ] [Guo, Gencai]Beijing Univ Technol, Coll Mat Sci & Engn, Key Lab Adv Funct Mat, Educ Minist China, Beijing 100124, Peoples R China
  • [ 2 ] [Wang, Changhao]Beijing Univ Technol, Coll Mat Sci & Engn, Key Lab Adv Funct Mat, Educ Minist China, Beijing 100124, Peoples R China
  • [ 3 ] [Luo, Siwei]Beijing Univ Technol, Coll Mat Sci & Engn, Key Lab Adv Funct Mat, Educ Minist China, Beijing 100124, Peoples R China
  • [ 4 ] [Ming, Bangming]Beijing Univ Technol, Coll Mat Sci & Engn, Key Lab Adv Funct Mat, Educ Minist China, Beijing 100124, Peoples R China
  • [ 5 ] [Wang, Bingrong]Beijing Univ Technol, Coll Mat Sci & Engn, Key Lab Adv Funct Mat, Educ Minist China, Beijing 100124, Peoples R China
  • [ 6 ] [Wang, Ruzhi]Beijing Univ Technol, Coll Mat Sci & Engn, Key Lab Adv Funct Mat, Educ Minist China, Beijing 100124, Peoples R China

Reprint Author's Address:

  • 王如志

    [Wang, Changhao]Beijing Univ Technol, Coll Mat Sci & Engn, Key Lab Adv Funct Mat, Educ Minist China, Beijing 100124, Peoples R China;;[Wang, Ruzhi]Beijing Univ Technol, Coll Mat Sci & Engn, Key Lab Adv Funct Mat, Educ Minist China, Beijing 100124, Peoples R China

Show more details

Related Keywords:

Source :

PHYSICS LETTERS A

ISSN: 0375-9601

Year: 2020

Issue: 28

Volume: 384

2 . 6 0 0

JCR@2022

ESI Discipline: PHYSICS;

ESI HC Threshold:100

Cited Count:

WoS CC Cited Count: 10

SCOPUS Cited Count: 9

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 10

Online/Total:330/10703529
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.