Indexed by:
Abstract:
In this article, empirical likelihood inferences for semiparametric varying-coefficient partially linear models with longitudinal data are investigated. We propose a groupwise empirical likelihood procedure to handle the inter-series dependence of the longitudinal data. By using residual-adjustment, an empirical likelihood ratio function for the nonparametric component is constructed, and a nonparametric version Wilks' phenomenons is proved. Compared with methods based on normal approximations, the empirical likelihood does not require consistent estimators for the asymptotic variance and bias. A simulation study is undertaken to assess the finite sample performance of the proposed confidence regions.
Keyword:
Reprint Author's Address:
Email:
Source :
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS
ISSN: 0361-0926
Year: 2010
Issue: 11
Volume: 39
Page: 1898-1914
0 . 8 0 0
JCR@2022
ESI Discipline: MATHEMATICS;
JCR Journal Grade:4
CAS Journal Grade:4
Cited Count:
WoS CC Cited Count: 24
SCOPUS Cited Count: 24
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 7
Affiliated Colleges: