Indexed by:
Abstract:
把流形学习与半监督学习相结合,研究了流形上的半监督回归问题.简要介绍了半监督流形学习的Laplacian正则化框架,在此基础上推导了基于一类广义损失函数的Laplacian半监督回归,它能够利用数据所在流形的内在几何结构进行回归估计.具体给出了线性ε-不敏感损失函数,二次ε-不敏感损失函数和Huber损失函数的Laplacian半监督回归算法,在模拟数据和Boston Housing数据上对算法进行了实验,并对实验结果进行了分析.这些结果将为进一步深入研究半监督流形回归问题提供一些可借鉴的积累.
Keyword:
Reprint Author's Address:
Email:
Source :
计算机研究与发展
ISSN: 1000-1239
Year: 2007
Issue: 7
Volume: 44
Page: 1121-1127
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count: 35
Chinese Cited Count:
30 Days PV: 9
Affiliated Colleges: