Indexed by:
Abstract:
An ecological performance analysis and optimization based on the exergetic analysis is carried out in this paper for an endoreversible air heat pump cycle with variable-temperature heat reservoirs. An exergy-based ecological optimization criterion, which consists of maximizing a function representing the best compromise between the exergy output rate and exergy loss rate (entropy generation rate and environment temperature product) of the heat pump cycle, is taken as the objective function. The analytical relation of the exergy-based ecological function is derived. The effects of pressure ratio, the effectiveness of the heat exchangers, the inlet temperature ratio of the heat reservoirs and the ratio of hot-side heat reservoir inlet temperature to ambient temperature on ecological function are analyzed. The cycle performance optimizations are performed by searching the optimum distribution of heat conductance of the hot- and cold-side heat exchangers for fixed total heat exchanger inventory and the optimum heat capacity rate matching between the working fluid and the heat reservoirs, respectively. The influences of some design parameters, including heat exchanger inventory and heat capacity rate of the working fluid on the optimal performance of the endoreversible air heat pump are provided by numerical examples. The results show that the exergy-based ecological optimization is an important and effective criterion for the evaluation of air heat pumps.
Keyword:
Reprint Author's Address:
Email:
Source :
REVISTA MEXICANA DE FISICA
ISSN: 0035-001X
Year: 2009
Issue: 2
Volume: 55
Page: 112-119
1 . 7 0 0
JCR@2022
ESI Discipline: PHYSICS;
JCR Journal Grade:4
CAS Journal Grade:1
Cited Count:
WoS CC Cited Count: 12
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 6
Affiliated Colleges: