Indexed by:
Abstract:
For vehicle integrated navigation systems, real-time estimating states of the dead reckoning (DR) unit is much more difficult than that of the other measuring sensors under indefinite noises and nonlinear characteristics. Compared with the well known, extended Kalman filter (EKF), a recurrent neural network is proposed for the solution, which not only improves the location precision and the adaptive ability of resisting disturbances, but also avoids calculating the analytic derivation and Jacobian matrices of the nonlinear system model. To test the performances of the recurrent neural network, these two methods are used to estimate the state of the vehicle's DR navigation system. Simulation results show that the recurrent neural network is superior to the EKF and is a more ideal filtering method for vehicle DR navigation.
Keyword:
Reprint Author's Address:
Email:
Source :
JOURNAL OF SYSTEMS ENGINEERING AND ELECTRONICS
ISSN: 1004-4132
Year: 2008
Issue: 2
Volume: 19
Page: 351-355
2 . 1 0 0
JCR@2022
ESI Discipline: ENGINEERING;
Cited Count:
WoS CC Cited Count: 3
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 12