Indexed by:
Abstract:
支持向量机(Support Vector Machines,简称SVM)能够有效地解决小样本学习、非线性及高维模式识别等问题。对此提出了在无特征提取情况下基于SVM的车牌字符识别方法,通过实验选定二次多项式作为核函数,并将基于SVM的车牌字符识别与基于BP神经网络的车牌字符识别进行了实验对比。结果表明,在训练样本较少的情况下,该系统具有较高的识别率和识别速度,并具有很好的分类推广能力。
Keyword:
Reprint Author's Address:
Email:
Source :
公路交通科技
Year: 2006
Issue: 05
Page: 126-129
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 5
Affiliated Colleges: