Indexed by:
Abstract:
为克服神经网络受噪声和冗余特征的影响而出现过拟合,提出一种自适应级联神经网络(ACNN)及学习算法.ACNN从少量特征开始学习,在学习过程中根据特征对分类的有效性增加新特征,用映射递归算法调节权值,逐步确定网络结构,使其含有最少数目的输入和隐层神经元.此方法应用于区分两种思维状态下的脑电信号(EEG),经训练的网络对测试段的分类正确率为83.1%,与文献[1]中采用BP网络的结果相比,显示了ACNN较好的分类能力.
Keyword:
Reprint Author's Address:
Email:
Source :
模式识别与人工智能
ISSN: 1003-6059
Year: 2005
Issue: 6
Volume: 18
Page: 713-716
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count: 4
Chinese Cited Count:
30 Days PV: 5
Affiliated Colleges: