Indexed by:
Abstract:
An elastodynamic solution for the stress wave propagation in spherical curved plates composed of functionally graded materials (FGM) is presented. Properties of materials are assumed to vary in the direction of the thickness according to a known radial variation law (gradient field). The formulation is based on the linear three-dimensional elasticity. The Legendre orthogonal polynomial series expansion approach is used for determining the guided waves dispersion curves in functionally graded spherical curved plates. Our results from a homogeneous anisotropic spherical curved plate are compared with those published earlier to confirm the accuracy and range of applicability of this polynomial approach. Guided wave dispersion curves for graded spherical curved plates with different gradient fields are calculated, and the effects of the gradient field on the characteristics of guided waves are illustrated. Finally, dispersion curves for graded spherical curved plates at different ratios of inner radius to thickness are calculated to discover the influences of that ratio on the wave characteristics. (C) 2006 Elsevier Ltd. All rights reserved.
Keyword:
Reprint Author's Address:
Email:
Source :
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES
ISSN: 0020-7683
Year: 2007
Issue: 11-12
Volume: 44
Page: 3627-3637
3 . 6 0 0
JCR@2022
ESI Discipline: ENGINEERING;
JCR Journal Grade:1
Cited Count:
WoS CC Cited Count: 34
SCOPUS Cited Count: 42
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 8
Affiliated Colleges: