Indexed by:
Abstract:
In this study, a membrane bioreactor (MBR) was used to achieve both nitrogen and carbon removal by a simultaneous partial nitrification, anammox and denitrification (SNAD) process. During the entire experiment, the intermittent aeration (non-aerobic time : aeration time, min min(-1)) cycle was controlled by a time-controlled switch, and the aeration rate was controlled by a gas flowmeter, and the optimal operating parameters as determined by response surface methodology (RSM) were a C/N value of 1.16, a DO value of 0.84 mg l(-1) and an aerobic time (T-ae) of 15.75 min. Under these conditions, the SNAD process achieved efficient and stable nitrogen and carbon removal; the total inorganic nitrogen removal efficiency and chemical oxygen demand removal efficiency were 92.31% and 95.67%, respectively. With the formation of granular sludge, the membrane fouling rate decreased significantly from 35.0 Pa h(-1) at SNAD start-up to 19.9 Pa h(-1) during stable operation. Fluorescence in situ hybrid analyses confirmed the structural characteristics and the relative ratio of aerobic ammonia-oxidizing bacteria, anaerobic ammonia-oxidizing bacteria and denitrifying bacteria in the SNAD system.
Keyword:
Reprint Author's Address:
Email:
Source :
ROYAL SOCIETY OPEN SCIENCE
ISSN: 2054-5703
Year: 2020
Issue: 9
Volume: 7
3 . 5 0 0
JCR@2022
Cited Count:
WoS CC Cited Count: 13
SCOPUS Cited Count: 14
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 13
Affiliated Colleges: